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An anisotropicsdichroicd optical cavity containing a self-focusing Kerr medium is shown to display a
bifurcation between static—Ising—and moving—Bloch—domain walls, the so-called nonequilibrium Ising-
Bloch transitionsNIBd. Bloch walls can show regular or irregular temporal behavior, in particular, bursting and
spiking. These phenomena are interpreted in terms of the spatiotemporal dynamics of the extended patterns
connected by the wall, which display complex dynamical behavior as well. Domain wall interaction, including
the formation of bound states is also addressed.
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I. INTRODUCTION

Domain walls are localized structures typical of spatially
extended systems with broken phase invariance, where two
or more homogeneous states with different phases occupy
different patches, the walls being defects connecting two of
such states or domains. Two different types of walls can exist
in systems described by a complex order parameter, namely
Ising and Bloch walls, which differ in the way the phase
changes between the two domains as the wall is crossed: An
Ising wall is characterized by a discontinuous variation of the
field phase across the wall, whereas in a Bloch wall the phase
angle rotates continuously accross the wall. As this rotation
can occur in two different senses Bloch walls are chiral.
sContrarily, the Ising wall is not chiral.d Alternatively, the
order parameter is null at the core of an Ising wall, while in
a Bloch wall the order parameter does not vanish at any
point. For this reason, Ising and Bloch walls are often re-
ferred to as dark and grey solitons, respectively. When the
system dynamics do not derive from a potential, other crucial
differences between Ising and Bloch walls refer to their dy-
namics: Ising walls are stationarysstaticd, while Bloch walls
move with a velocity related to their chirality.

Both types of domain walls may exist in different param-
eter regions, and in this case they bifurcate one into another
via a nonequilibrium Ising-BlochsIBd transitionf1,2g, which
can be interpreted as a bifurcation of the wall chiralityf1g.
The IB transition has been found in systems of very different
nature, such as nematic liquid crystalsf3g or reaction-
diffusion systemsf4g. In the optical context, the phenomenon
has been predicted to occur in type If5g and type II f6g
optical parametric oscillators; from the experimental point of
view it is to be mentioned a related studyf7g where Lari-
onovaet al. have analyzed the dynamics of two-dimensional
phase domains in a photorefractive oscillator in a degenerate
four-wave mixing configuration. Within the samesclosedd
wall they found both Bloch-type and Ising-type segments.
They did not observe, however, the nonequilibrium IB tran-
sition, probably because of the two-dimensionals2Dd char-
acter of their system, which complicates the dynamics of

domain walls with curvature effects. In fact the first experi-
mental observation of the nonequilibrium IB transition in
optics has been confirmed very recently in thestransverselyd
one-dimensional version of the same devicef8g. The possi-
bility of domain walls as stable states has a particular interest
in nonlinear optical systems, given the potential use of local-
ized structures in all-optical signal processing. In nonlinear
optical cavities, the structures develop in the transverse
plane, perpendicular to the resonator axis, and can be con-
trolled by external parametersf9g.

Optical systems with a Kerr nonlinearity have been shown
to exhibit a rich spatiotemporal dynamics, see Ref.f10g and
references therein for details. Concerning the nonequilibrium
Ising-Bloch transition, the Kerr cavity, consisting of an opti-
cal resonator filled with a Kerr medium and driven by a
external coherent field, is a good candidate for exhibiting it,
as this system presents the basic requirement of broken phase
invariance. The original model proposed by Lugiato and
Lefever f11g was later extended in Ref.f12g to include the
vector character of the light fields, what allows to describe
instabilities of the light polarization state. This work was
extended in Ref.f13g where the case of elliptically polarized
input was considered and in Ref.f14g where two-
dimensional domain walls in the form of dark-ring solitons
were studied.

Recently these works were generalized by considering the
possibility of dichroism and/or birefringence in the optical
cavity for the two linear polarization componentsf15–17g. It
was shown that large enough cavity anisotropy or birefrin-
gence substantially modifies the dynamics of the system. In
particular, they allow for the polarization instability to rule
pattern formation in self-focusing Kerr cavities, something
that does not occur in isotropic cavitiesswithout birefrin-
gence or dichroismd f12g. Moreover, as the polarization in-
stability can be subcritical for large enough dichroism or
birefringencef16,17g bright cavity solitons can exist, which
in this case are polarization solitonsf16,17g. In Ref. f16g it
was also shown that in the limit of large anisotropyswhen
the losses of the two polarization components are very dif-
ferent in magnituded, the dynamics of the system can be
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described by a single order parameter obeying a universal
equation, namely the parametrically driven, damped nonlin-
ear Schrödinger equationsPDNLSEd. For our purposes the
recent predictionf18g that the PDNLSE contains an IB tran-
sition and that Ising and Bloch domain walls can connect
either spatially uniform or patterned states is of special rel-
evance. This equation has been derived in different contexts
ssee Ref.f18gd. In particular, in the optical context, the
PDNLSE has been shown to describesapart from the aniso-
tropic Kerr resonatorf16gd the degenerate optical parametric
oscillatorf19,20g and optical fiber loops with parametric am-
plification f21g.

However, despite the generality of the results obtained in
Ref. f18g, their applicability to the Kerr cavity is strictly
valid only in the case of strong anisotropy, a very restrictive
condition. In this paper we consider the more realistic case of
a Kerr cavity with moderate anisotropy as discussed in Sec.
II, where the symmetries of the model and the feasibility of
domain walls are discussed. The pattern forming properties
of this system are investigated in Sec. III. Ising and Bloch
walls are then shown to be solutions of the system and the IB
transition between them is characterized in Sec. IV. For small
detunings, the usual scenario of IB transition and Bloch wall
dynamics is found. For larger detunings, the dynamics of
domain walls shows features typical of excitable systems,
such as spiking and bursting during the domain wall evolu-
tion, as discussed in Sec. VI. The collisions between walls
and the formation of bound states is preliminarily considered
in Sec. V. Finally the main conclusions of the work are high-
lighted in Sec. VII.

II. MODEL AND HOMOGENEOUS SOLUTIONS

The system considered in this paper is an optical resona-
tor with plane mirrors filled with an isotropicxs3d medium of
self-focusing type and driven by a spatially homogeneous
linearly polarized coherent field of amplitudeE staken real
without loss of generalityd that propagates along the resona-
tor axis z. The resonator is anisotropicsdichroicd, i.e., the
two intracavity field polarization componentsA0 andA1 spar-
allel and orthogonal to the input field, respectivelyd experi-
ence different linear lossesswith associated cavity linewidths
g0 and g1, respectivelyd. In order to avoid curvature effects
that strongly influence domain wall dynamics, we assume a
transversely one-dimensionals1Dd problemsthat can be ex-
perimentally achieved with a slab waveguide geometry that
confines the fields along one transverse dimensionssayyd, or
with rectangular slits placed in appropriate planesf22gd. The
adimensional model equations for such a system in the mean
field limit read f16,17g

]tA0 = − sg + iD0dA0 + iSuA0u2A0 + AuA1u2A0 +
B
2

A1
2A0

*D
+ i]x

2A0 + gE, s1d

]tA1 = − s1 + iD1dA1 + iSuA1u2A1 + AuA0u2A1 +
B
2

A0
2A1

*D
+ i]x

2A1, s2d

where D0=sv0−vd /g1 and D1=sv1−vd /g1 are normalized

cavity detuningssv is the angular frequency of the input
field andv0,1 are the frequencies of the cavity longitudinal
modes with polarization parallel and orthogonal to the input
closest tovd, g=g0/g1 is the cavity anisotropy parameter;]x

2

accounts for diffractionsthe transverse spatial coordinatex is
normalized to the diffraction coefficientd and t is time nor-
malized tog1

−1. Finally, A andB are the Maker and Terhune
coefficients, which verifyA+sB /2d=1 for isotropic media
f23g, which we consider. For details on the normalizations
see Ref.f15g.

In Refs. f12–14g, the pattern formation properties of this
model have been studied forg=1 andD1=D0. We extended
the model to the anisotropic cavitysgÞ1d first considering
the plane-wave modelsno diffractiond f15g and then consid-
ering pattern formationf16g, where we concentrated in the
limit of large cavity anisotropy and demonstrated that the
PDNLSE describes the system in this limit. Later, in Ref.
f17g we studied pattern formation and localized structures
due to birefringencesD0ÞD1d.

In the following, the caseD0=D1;D sno birefringenced is
considered. Also we restrict the study to the case when the
nonlinear material is a liquidse.g., CS2d, for which A=1/4
and B=3/2 f23g. This makes that our results could apply,
e.g., to cells of liquid crystal in the isotropic phasesnematic
liquid crystals, which have a much larger nonlinearity, are
not covered by our analysis as they areanisotropicnonlinear
mediad.

Most relevant for our study are the symmetries supported
by Eqs. s1d and s2d. In particular the termgE in Eq. s1d
completely breaks the phase symmetry of fieldA0. Neverthe-
less, the model still supports the discrete symmetrysA0,A1d
→ sA0,−A1d. fNote that the four-wave mixing term—the one
multiplied by B /2 in Eq. s2d—breaks the continuous phase
symmetry.g This symmetry means that whenever a state
sA0sx,td ,A1sx,tdd is a solution of the system, another solu-
tion sA0sx,td ,−A1sx,tdd exists as well that is dynamically
equivalentshas the same dynamical properties like stability,
etc.d to the former. AsA0 andA1 correspond to the two or-
thogonal components of the light electric field vector, the
above symmetry relates two equivalent solutions having op-
posite helicity, apart from a different polarization ellipse ori-
entation. This symmetry thus opens the possibility of excit-
ing domain walls that join asymptotically two of such
symmetric states. On the other hand, the reflectionsx→−xd
and translationsx→x+x0d invariances of the problem imply
that if a Bloch wall of given chirality exists, another, equiva-
lent one of opposite chirality also exists, and both move in
opposite directionsf1,8,18g.

The existence conditions and dynamic behavior of do-
main walls, the main subject of this paper, is strongly related
with the stability properties of the homogeneous solutions
connected by the walls. In the system described by Eqs.s1d
ands2d, these solutions have been analyzed in Refs.f15,17g,
and we review here the main results.

According to the polarization state of the intracavity field
two kinds of steady homogeneous solutions are possible,sid
the linearly polarized state, with intensitiesI1;uA1

2u=0 and
I0;uA0

2u given by the solutions of

g2E2 = fg2 + sD − I0d2gI0, s3d
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andsii d theelliptically polarized state, with intensities deter-
mined by

g2E2I0 = sI1 + gI0d2 + fsD − I1dI1 − sD − I0dI0g2, s4d

I1 = D − AI0 ±ÎSB
2

I0D2

− 1. s5d

The linearly polarized solution Eq.s3d shows a multivalued
character whenD.Î3g f15g. The elliptically polarized solu-
tion Eq. s4d was analyzed in detail in Ref.f15g and can be a
multivalued function as well.

The cavity anisotropy parameterg plays an important role
on the character of the polarization instabilitysi.e., the bifur-
cation affecting the linearly polarized solution that sets the
onset of eliptically polarized emissiond, as shown in Refs.
f15,17g. In particular the polarization instability can become
subcritical for g.2 sthe exact value at which this occurs
depends on the detuning valued wheneverD.1/3. In this
case bright cavity solitons can be supported by the system at
low pumpingsf16g. More important for the present study is
the fact that for largeg the anisotropic Kerr cavity model can
be reduced to a PDNLSE, which exhibits an IB transition
f18g. This implies that the anisotropic Kerr cavity will ex-
hibit the same phenomenon for large enoughg. In order to
test the universality of this phenomenon we investigate here
a cavity with moderate anisotropy and takeg=3.5 for defi-
niteness. We note that for this value ofg the model cannot be
rigorously reduced to a PDNLSE and then some extra fea-
tures can be expected.

III. THE PATTERN FORMING INSTABILITIES

The stability of the linearly polarized solutions3d against
space-dependent perturbations was analyzed in Refs.f16,17g,
where analytical expressions for the different boundaries and
wave number of the emerging patterns were obtained. In Fig.
1 the stability of the different solutions is shown on the plane
E-D, which are the only free parameters. In the figure, the
linearly polarized solutions3d is stable below curveE1,
which corresponds to the polarization instability. Above this
curve the linearly polarized state is no more a stable solution
and gives rise to the elliptically polarized solutions4d and
s5d. In its turn, this last solution exists above lineE2, i.e.,
there is a domain of coexistence between the linearly and
elliptically polarized solutions, marked in the figure as BS,
between linesE1 andE2.

We consider now the existence of pattern forming insta-
bilities of the elliptically polarized solutions4d and s5d,
which are of relevance for the analysis of the dynamics of
domain walls performed below. Following the usual proce-
dure, we consider perturbations of the homogeneous solu-
tions in the formdAisx,td=dAi expslt+ikxd, and Resld=0
signals a bifurcation. Unlike the case of the linearly polar-
ized solutionf16,17g, the stability analysis is now quite in-
volved and analytic expressions cannot be obtained. Instead,
we perform a numerical analysis of the eigenvaluesl to
determine the instability boundaries.

The pattern formation instability boundary affecting the
elliptically polarized solutions4d and s5d corresponds to the

piecewise curveswith dashed and dotted segmentsd joining
the pointsa–e. Beyond this linesshadowed aread, the ellip-
tically polarized solution is modulationally unstable.

The complex form of this boundary follows from the de-
pendence of the real part of the largest eigenvalue with the
wave number of the perturbation. As shown in Fig. 2, the
real part of the eigenvaluessolid lined evaluated for param-
eters corresponding to pointsbd in Fig. 1 shows two maxima
at different wave numbers. Depending on the parameter set-
ting the threshold is minimum for the smallest wave number
sdashed linesb–c and d–ed or for the largest wave number
sdotted linesa–b andc–dd. Consequently, the points denoted
by b, c, and d in the figure correspond to codimension-2
points, where the instability is reached at two different wave
numbers simultaneously. Furthermore, the imaginary part of
the eigenvalue is null in the first casessdashed linesb–c and
d–ed, thus corresponding to the emergence of stationary pat-
terns, but non-null in the second casessdotted linesa–b and
c–dd, see Fig. 2, thus corresponding to a Hopf bifurcation

FIG. 1. Bifurcation diagram of homogeneous solutions forA
=1/4,B=3/2,D0=D1=D, andg=3.5, together with the boundaries
of Ising-Bloch transitions. See text for details.

FIG. 2. Growth rate of the perturbations of the homogeneous
solutions as a function of the spatial wave number, near a
codimension-2 point forD=1.25 andE=3.5. The rest of the param-
eters are the same as in Fig. 1.
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that gives rise to the appearance of dynamic patterns whose
amplitude oscillates in time. Finally, as stated, the region
marked with BS in Fig. 1 denotes the domain of coexistence
between linearly and elliptically polarized states. When this
coexistence is bistable and one of the statessthe elliptically
polarized state in this cased is spatially modulatedsshadowed
regiond, bright cavity solitons can be also excitedf16,17g.

IV. THE ISING-BLOCH TRANSITION

We performed the numerical integration of Eqs.s1d and
s2d with a split-step algorithm, forA=1/4, B=3/2, D0=D1
;D, and g=3.5. Periodic boundary conditions were used
that impose an even number of walls in the transverse do-
main. A spatial grid of 2048 points was used and the tempo-
ral step was lowered down toDt=0.001 in order to obtain
Dt-independent results. As an initial condition, two walls
were placed symmetrically with respect to the center of the
integration window. Several integration region lengthsL
were investigated. Results shown here correspond to the
choiceL=20Î5, which ensured enough spatial separation be-
tween the two walls in order to avoid their mutual interaction
during the initial stage of the evolution. For some parameter
settings the walls reached a static configuration after a tran-
sient, having fixed their position across the transverse plane.
In such cases it was assessed that walls were Ising ones by
verifying that the complex fieldA1 was zero at the wall core.
For other parameter values walls reached a moving configu-
ration and were identified as Bloch walls as there was no
point in the transverse plane where the complex fieldA1 was
zero. Note that the following analysis of the results refers to
the cross polarized componentA1 that is the one in which
domain walls can be clearly identified as dark solitonsf16g
as walls join two domains where the values ofA1 have op-
posite signssphasesd as discussed.

Figure 1 summarizes our numerical findings. For low val-
ues of both pumpE and detuningD sinside the region la-
beled ”Ising,” delimited by the solid lines joining points
a–f–g–h–d–e, and line E2d stable Ising walls are found.
These Ising walls connect homogeneous states in most of
this region, except in the thin white areas at the right of the
dashed lined–e and the dotted linec–d, where they connect
patterned states, in agreement with the linear stability analy-
sis discussed above. By increasing the pump or the detuning
from this region we observe IB transitions, marked with
solid lines f–g–h–d–e, where Ising walls are replaced by
Bloch walls.

Before commenting the differences between the various
Ising-Bloch transition linessIB1, IB2, and IB3d, let us com-
ment about what happens in the small region above linea–b,
where the behavior is somewhat anomalous. In the small
domain between this line and the dark-grey shadowed area
marked as “No walls” the walls are unstable, and the single
pattern supported by the system are rolls. Then, strictly
speaking, the domain “No walls” extends until the linea–b.
If we have left this domain without including it in the “No
walls” domain it is just because in it a very long transient
behavior in the dynamics of the walls is observed until walls
eventually disappear and the system develops a spatially pe-

riodic state. This behaviorslongest transientd is in contrast
with what happens in the “No walls” domain, where domain
walls disappear sharply.

At the right of the pointf, when increasing the pump, two
different regimes can be clearly distinguished, depending on
detuning. For small detunings the transition is denoted by
IB1 in Fig. 1 scontinuous lined, and in this case the Bloch
walls sthat exist inside the “triangle”f–b–gd connect homo-
geneous states. For the chosen values of the parameters, this
regime exists up toD=1.75. For larger detunings, the transi-
tion is mainly ruled by the pattern forming instability expe-
rienced by the domains joined by the wallssIB2 in Fig. 1,
represented by the continuous curved. Note that, for moder-
ate detuningssin the center of the plotd, the IB and pattern
forming boundaries are nearly coincident. In this case the
Bloch walls always connect patterned states. Finally, for
small pump but large detunings, another region IB3 of Bloch
walls is found sright-hand side of the curveh–d–ed. The
Bloch walls in this region move with an extremely small,
random velocity, similarly to what happens in the PDNLSE
without diffusion or saturation termsf18g.

An example of a Bloch wall corresponding to the transi-
tion IB1, obtained forD=0.8 andE=3.25, is shown in Fig. 3.
In Fig. 3sad the intensity distribution in transverse space near
the core of the wall is given, and in Fig. 3sbd we show the

FIG. 3. Example of a pair of Bloch walls numerically obtained
for the parametersD=0.8 andE=3.25 sthe rest of the parameters
are the same as in Fig. 1d. Intensity distributionsad and parametric
representationsbd.
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corresponding phase portraitsi.e., a plot of the real versus the
imaginary part of the fieldd. Both pictures are alternative rep-
resentations where the Bloch character of the wall is evi-
denced. The intensity at the wall core is small, but non-null,
Fig. 3sad, and a smooth variation of the phase between the
domains separated by the wall is appreciated in the paramet-
ric plot in Fig. 3sbd. For these parameters, the homogeneous
solutions which constitute the domains connected by the wall
are modulationally stable.

As stated in the introduction, an essential feature of Bloch
walls in nonvariational systems is that, contrary to Ising
walls, they move in the transverse plane, with a velocity that
depends on the parameters. For a fixed value of the detuning
D=1, the dependence of the wall velocity with the pump is
shown in Fig. 4. For this particular value of the detuning, in
the region where the background solutions are modulation-
ally unstable, the walls no longer exist as commented, since
spatial modulations of the background grow and fill com-
pletely the transverse space leading eventually to a roll pat-
tern.

Let us now describe the dynamic behavior of Bloch walls.

V. BOUND STATES

As stated in the preceding section the use of periodic
boundary conditions forces that the number of domain walls
that can exist within the integration window be an even num-
ber, two is the minimum. On the other hand, Bloch walls
move with a velocity whose sign depends on their chirality.
Then two situations are possible, namely, that the two Bloch
walls have either the same or different chiralitiessnotice that
the sign of the chirality of the Bloch walls is fixed by the
initial conditionsd. When the chiralities are the same, the two
Bloch walls move along parallel paths and no interaction
between them appearssat least when their movement is regu-
lar; when it is highly irregular the chirality of the walls can
change independently of each otherf18gd. Contrarily, when
the chiralities are opposite the paths followed by the two
Bloch walls intersect and a collision occurs. As a result a
localized structure may appear and a bound state is formed.
This bound state is a cavity soliton different from a wall.
Although a detailed study of these objects falls outside the
scope of the present work, and without trying to be exhaus-
tive in their characterization, we just note that two different

behaviors of the cavity soliton have been identified.
For small detuningssi.e., inside the trianglef–b–g above

the region IB1 in Fig. 1d, after the collision the positions of
the walls delimiting the cavity soliton perform small ampli-
tude antiphase periodic oscillations, as shown in Fig. 5;
hence the cavity soliton performs a breathing dynamics, re-
maining constant at its position in the transverse plane.

For higher detuningssabove the region IB2d bound states
are also formed as a result of the interaction, but their dy-
namics is different. In these cases, after the collision, one
wall is dragged by the other and the resulting bound state
drifts with the velocity of one of the original Bloch walls as
shown in Fig. 6.

Finally, we note that near but below the boundarya–b, the
walls do not form bound states after the interaction, but in-

FIG. 4. Bifurcation diagram of the velocity of the walls forD
=1 sthe rest of the parameters are the same as in Fig. 1d. Dashed
line shows the boundary of the pattern forming instability

FIG. 5. Interaction of two Bloch walls with opposite chirality
for D=1 andE=3.1 sthe rest of the parameters are the same as in
Fig. 1d. Intensitysbd and real partscd distribution of the bound state.
The inset shows the oscillatory evolution of the wall position after
the interaction.
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stead bounce and exchange their chiralities. Such behavior is
shown in Fig. 7.

Although it is difficult to determine the origin of these
behaviors after a collision is produced, the reason for these
different behaviors is very likely linked to the different dy-
namics of the patterned state that the walls connect, whose
complicated spatiotemporal dynamics depends on the param-
eter set. In the next section, where we concentrate in the
dynamic behavior of isolated Bloch walls, we give some
clues on how the pattern dynamics affects the wall behavior.

VI. BURSTING AND SPIKING DYNAMICS OF ISOLATED
DOMAIN WALLS

In the small detuning regime, Bloch walls behave in a
regular manner and the motion occurs at a constant velocity
as in the case shown in Fig. 4. For higher detunings however,
the wall dynamics shows features which are characteristic of

excitable systems. The wall motion is in fact regular only
close to the IB2 transition, which nearly coincides with the
pattern formation boundary, see Fig. 1. For higher pump val-
ues, wall dynamics is characterized by an irregular behavior
of the wall position. We report next several numerical ex-
amples of such irregular motion, obtained forE=3.5 and
different values of the detuningD.

In Fig. 8, a bursting phenomenonsthe appearance of al-
most periodic oscillations during time intervals of arbitrary
durationd, is observed both in the wall position, Fig. 8sad, and
chirality, Fig. 8sbd, for D=2.25. fWe used the definition of
chirality x=ImsA1

*]xA1dux=x0
f18g wherex0 denotes the point

where the wall intensityuA1u2 is at its minimum.g After ex-

FIG. 6. Interaction of two Bloch walls with opposite chirality
for D=3.25 andE=3 sthe rest of the parameters are the same as in
Fig. 1d. Intensitysbd and real partscd distribution of the bound state.

FIG. 7. Bouncing of two walls forD=0.84 andE=3.4 sthe rest
of the parameters are the same as in Fig. 1d. Intensitysbd and real
part scd distribution of the walls during the interaction.
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periencing several bursts, the wall velocity turns to be con-
stant again, but in this case with a chirality of opposite sign
with respect to the initial one. During the steady motion, the
chirality takes a very small value,x<10−3, and consequently
the change in sign is not appreciated in Fig. 8sbd, owing to
the scale imposed by the bursting events. However, this
change is manifested in Fig. 8sad as a change in the sign of
the wall velocity. The number of bursts and final chirality
depends in general on the parameter values and initial con-
ditions, such as the amplitude and the relative distance of the
two initial walls.

A slight increase in the detuning leads to a qualitatively
different behavior, namely a spiking in the wall position. An
example is shown in Fig. 9, obtained forD=2.5. In this case
the bursts appear periodically in time, in the form of spikes.
The intensity distribution of the Bloch wall during the spik-
ing regime is shown in Fig. 10. The wall connects two pat-
terned states with different spatial distributions. The pattern
on the right-hand side of the wall in Fig. 10 is spatially
harmonic, contains a single spatial frequency, while the pat-
tern of the left-hand side of the wall is biperiodic, and both a
fundamental and a small amplitude second spatial harmonic
are present. This particular structure of the domain walls has
been observed in all the numerical simulations in the irregu-
lar regime, and seems to be at the root of the complex be-
havior exhibited by the wall dynamics.

These numerical results suggest that the complex dynamic
behavior of Bloch walls is related with secondary instabili-
ties of the extended roll patterns which form the domains at
both sides of the wall. In particular, numerics show that
bursting and spiking of the wall position always develop in
coincidence with the appearance of a second spatial fre-
quency in the intensity of the roll pattern forming one of the
domains. To check this statement, Eqs.s1d and s2d were in-
tegrated in the absence of walls, and the spatial distribution
of roll patterns was studied. A summary of results is given in
Fig. 11, corresponding to roll patterns obtained for a fixed

FIG. 8. Bursting of the wall positionsad and chirality sbd, ob-
tained forD=2.25,E=3.5 sthe rest of the parameters are the same
as in Fig. 1d. Inset shows the oscillations during the burst.

FIG. 9. Spiking behavior of the wall positionsad and chirality
sbd, obtained forD=2.5, E=3.5 sthe rest of the parameters are the
same as in Fig. 1d.

FIG. 10. Intensity distribution near a Bloch wall corresponding
to Fig. 7. Note that the wall connects periodic patterns with differ-
ent spatial structure.
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value of the pumpE=3.5 and for different detunings, in ac-
cordance with Figs. 8 and 9. The distributions shown in Figs.
11sad–11scd correspond, from top to bottom inside each fig-
ure, to the intensity, the real and the imaginary parts of the
extended patterns. Figure 11sad has been obtained forD

=1.5, and the resulting intensity pattern is a stationary roll,
with a single spatial frequency. In Fig. 11sbd, whereD=2, the
intensity pattern develops a second spatial frequency of
small amplitude. This value of detuning nearly corresponds
to the onset of bursting phenomena of the wall. Finally, in
Fig. 11scd, for D=2.25, the resulting intensity pattern shows
the coexistence, in different spatial domains, of rolls with
different periodicity and equal phasesscompare with Fig. 10
where a domain wall separates oppositely phased patternsd.
Clearly, in this parameter region there exists bistability be-
tween different spatial structures. This bistability seems to be
a requirement for the existence of irregular dynamics. It is
interesting to interpret these results in terms of the real and
imaginary parts of the patterns shown in the bottom parts of
Figs. 11sad–11scd. The second spatial frequency of the inten-
sity pattern, and consequently the irregular dynamical behav-
ior, appears when real and imaginary parts of the pattern
distributions cross, Fig. 11sbd and left part of Fig. 11scd.

VII. CONCLUSIONS

We have studied the dynamics of domain walls in an an-
isotropic optical Kerr cavity. Both Ising and Bloch walls, and
the transition between them, have been reported in the case
of moderate cavity anisotropy. The stability of the homoge-
neous solutions against pattern forming instabilities has been
also analyzed. These results show a complex scenario of spa-
tiotemporal evolution of patterns in this system. Domain wall
dynamics is shown to be related with the stability of the
domainsbackgroundd solutions. A numerical study shows the
existence of different domains of behavior, depending on pa-
rameters. Besides the typical evolution of Bloch walls, with a
drift at nearly constant velocity, we have observed regimes in
which the behavior of the Bloch wall parameterssposition,
velocity, chirality, and intensity at the cored is irregular, and
analogous to that found in the temporal dynamics of excit-
able systems. These regimes, namely bursting and spiking,
are reported for the first time in the case of domain walls in
optical cavities. Finally cavity solitons formed by the inter-
action of two domain walls have been identified and two
dynamical regimes of wall collision have been envisaged.
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